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Hilbert Projection Theorem
Lemma 1, (Hilbert Projection, Euclidean Case). Every nonempty, closed, and convex K ⊂ Rn contains a
unique vector of minimum L2 norm.

Proof. See Tao, Epsilon of Room, Vol. 1, Proposition 1.4.12 for a proof of the general case. �

Separating Hyperplane Theorem
Theorem 1, (Separating Hyperplane Theorem). Suppose A,B ⊂ Rn are disjoint, convex, and nonempty.
Then there exist c ∈ R and nonzero v ∈ Rn such that C and D lie on opposite sides (closed half-spaces) of
the separating hyperplane H = {x ∈ Rn | vTx = c}, that is, vTx ≥ c and vT y ≤ c for all x ∈ A, y ∈ B.

(1) Consider the Minkowski sum K ≡ A+ (−B) = {x− y | x ∈ A, y ∈ B}.
(a) K and its closure K are convex, being the sum of two convex sets A and −B.
(b) K contains the zero vector if and only if sets A and B intersect.
(c) K may contain the zero vector even if A and B are disjoint but infinitesimally close.

(2) Reduction: It suffices to show 〈u, v〉 ≥ 0 for all u ∈ K and some nonzero v ∈ Rn, the separating axis.
(a) Equivalently, 〈x− y, v〉 ≥ 0 for all x ∈ A, y ∈ B, by construction of K.
(b) Then, by linearity and properties of sup and inf [1],

〈x, v〉2 ≥ 〈y, v〉2 ∀ y ∈ B, x ∈ A
〈x, v〉2 ≥ sup

y∈B
〈y, v〉2 ∀ x ∈ A

inf
x∈A
〈x, v〉2 ≥ sup

y∈B
〈y, v〉2

(c) Choose c between (or equal to) the values above to obtain a separating hyperplane.
(3) Reduction: It suffices to show ‖v‖2 ≤ ‖v+ t(u−v)‖2 for some nonzero v ∈ Rn and every u ∈ K, t ∈ [0, 1].

(a) Then, ‖v‖2
2 ≤ ‖v‖

2
2 + 2t〈v, u− v〉2 + t2‖u− v‖2

2.
(b) For 0 < t ≤ 1 we thus have 0 ≤ 2〈v, u〉2 − 2‖v‖2

2 + t‖u− v‖2
2.

(c) Letting t→ 0 gives 〈u, v〉 ≥ ‖v‖2
2 ≥ 0 for all u ∈ K, and we may apply the previous claim.

(4) Case: Separation holds when dist(A,B) > 0. This includes the special case where both A and B are
closed and one is bounded.
(a) Let v ∈ K be the unique vector in K of smallest norm given by the Hilbert projection theorem.
(b) Because dist(A,B) > 0, K cannot contain the origin and so v is nonzero.
(c) Since K is convex, for any u ∈ K the line segment v + t(u− v) lies in K for any 0 ≤ t ≤ 1.
(d) By minimality of v, ‖v‖2 ≤ ‖v + t(u− v)‖2. Using the second reduction above, we are done.

(5) Case: Separation holds when dist(A,B) = 0 and the interior K◦ is nonempty.
(a) Then, the interior can be written as a union of countably many nonempty, compact, convex

subsets, K◦ =
⋃∞

j=1 Kk. For example, Kj = (1− 1
j )K ∩B(0, j).

(b) Let vj ∈ Kj be the unique vector of smallest norm in Kj given by the projection theorem.
(i) Since 0 /∈ K◦, we also have 0 /∈ Kj , so each vj is nonzero.
(ii) By an argument similar to the previous case, 〈u, vj〉 ≥ 0 for all u ∈ Kj .

(c) Normalize the vj to have unit length. By compactness of the unit sphere, the sequence (vj)∞j=1
has a subsequential limit v ∈ Rn, which is nonzero.

(d) By continuity of inner products, 〈u, v〉 ≥ 0 for all u ∈ K, and we are done.
(6) Case: Finally, if K has empty interior, then K is entirely contained by some hyperplane 〈·, v〉 = c, which

we may used for (weak) separation.
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Separating Axis Theorem
Theorem 2, (Separating Axis Theorem, 2D). Suppose A,B ⊂ R2 are disjoint, convex, compact polygons.
Then there exists a separating line with normal vector orthogonal to one of the edges of the Minkowski sum
A+ (−B).

Proof. Adapted from an answer on Math StackExchange, see https://math.stackexchange.com/q/2106402.

(1) Choosing the Axis. The Minkowski sum K = A + (−B) is also a compact, convex polygon, so we
can express K =

⋂n
k=1Hk as the intersection of finitely many closed half-planes Hk ⊂ Rn. Since

A ∩ B = ∅, we have 0 /∈ K, and accordingly 0 /∈ Hk for some k. Therefore, the vector v ∈ Hk of
smallest norm given by the projection theorem is nonzero.

(2) Orthogonality. Denote by `k ⊂ Hk the line corresponding to half-plane Hk. Let w ∈ Rn be a unit vector
in the direction of `k. Then, v − αw ∈ `k for all α ∈ R, and by minimality of v,

‖v‖2
2 ≤ ‖v − αw‖

2
2 = ‖v‖2

2 − 2α〈v, w〉2 + α2

Choosing α = 〈v, w〉, we find that ‖v‖2
2 ≤ ‖v‖

2
2 − 〈v, w〉

2
2, hence 〈v, w〉 = 0 and v ⊥ `k.

(3) Separation. From the proof of the hyperplane separation theorem, it suffices to show ‖v‖2
2 ≤ ‖v+t(x−v)‖2

2
for all x ∈ K and 0 ≤ t ≤ 1. Recall K ⊂ Hk, so by convexity, v + t(x− v) ∈ Hk. By minimality of v,
the desired inequality holds and we are done! �

Corollary 1. Suppose A,B ⊂ R2 are disjoint, convex, compact polygons. Then there exists a separating
line with normal vector orthogonal to one of the edges of A or B.

Theorem 3, (Separating Axis Theorem, General Case). Suppose A,B ⊂ Rn are disjoint, convex, compact
polytopes. Then there exists a separating hyperplane with normal vector orthogonal to one of the facets of
the Minkowski sum A+ (−B).
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