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Hilbert Projection Theorem

Lemma 1, (Hilbert Projection, Euclidean Case). Every nonempty, closed, and convex K C R™ contains a
unique vector of minimum Lo norm.

Proof. See Tao, Epsilon of Room, Vol. 1, Proposition 1.4.12 for a proof of the general case. O

Separating Hyperplane Theorem

Theorem 1, (Separating Hyperplane Theorem). Suppose A, B C R™ are disjoint, convex, and nonempty.
Then there exist ¢ € R and nonzero v € R™ such that C and D lie on opposite sides (closed half-spaces) of
the separating hyperplane H = {z € R" | vI'x = ¢}, that is, vIa > c and vy < c for allx € A,y € B.

(1) Consider the Minkowski sum K = A+ (-B)={x—y |z € A,y € B}.
(a) K and its closure K are convex, being the sum of two convex sets A and —B.
(b) K contains the zero vector if and only if sets A and B intersect.
(c) K may contain the zero vector even if A and B are disjoint but infinitesimally close.

(2) Reduction: It suffices to show (u,v) > 0 for all u € K and some nonzero v € R”, the separating axis.

(a) Equivalently, (x —y,v) > 0 for all € A,y € B, by construction of K.
(b) Then, by linearity and properties of sup and inf [1],
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(c) Choose ¢ between (or equal to) the values above to obtain a separating hyperplane.
(3) Reduction: It suffices to show ||v||, < |Juv+t(u—v)]|, for some nonzero v € R™ and every u € K, t € [0, 1].
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() Then, [Jv]3 < o3 + 2t{v,u — v), + ]u — o]
(b) For 0 <t <1 we thus have 0 < 2(v,u), — 2||v||§ + tlju — v||§
(¢) Letting t — 0 gives (u,v) > ||'UH§ >0 for all u € K, and we may apply the previous claim.

(4) Case: Separation holds when dist(A, B) > 0. This includes the special case where both A and B are
closed and one is bounded.

(a) Let v € K be the unique vector in K of smallest norm given by the Hilbert projection theorem.
(b) Because dist(A4, B) > 0, K cannot contain the origin and so v is nonzero.
(c) Since K is convex, for any u € K the line segment v + t(u — v) lies in K for any 0 < ¢ < 1.
(d) By minimality of v, ||[v||, < ||v 4 t(u — v)||,. Using the second reduction above, we are done.
(5) Case: Separation holds when dist(A, B) = 0 and the interior K° is nonempty.
(a) Then, the interior can be written as a union of countably many nonempty, compact, convex

subsets, K° = (J;Z, K. For example, K; = (1 — %)Kﬁ B(0, 7).
(b) Let v; € K; be the unique vector of smallest norm in K; given by the projection theorem.
(i) Since 0 ¢ K°, we also have 0 ¢ K, so each v; is nonzero.
(ii) By an argument similar to the previous case, (u,v;) > 0 for all u € K.
(c) Normalize the v; to have unit length. By compactness of the unit sphere, the sequence (v;)52,
has a subsequential limit v € R™, which is nonzero.
(d) By continuity of inner products, (u,v) > 0 for all v € K, and we are done.

(6) Case: Finally, if K has empty interior, then K is entirely contained by some hyperplane (-, v) = ¢, which
we may used for (weak) separation.
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Separating Axis Theorem

Theorem 2, (Separating Axis Theorem, 2D). Suppose A, B C R? are disjoint, convex, compact polygons.

Then there exists a separating line with normal vector orthogonal to one of the edges of the Minkowski sum
A+ (—B).

Proof. Adapted from an answer on Math StackExchange, see https://math.stackexchange.com/q/2106402.

(1) Choosing the Axis. The Minkowski sum K = A + (—B) is also a compact, convex polygon, so we
can express K = ()_, Hy as the intersection of finitely many closed half-planes H; C R™. Since
ANB =, we have 0 ¢ K, and accordingly 0 ¢ H, for some k. Therefore, the vector v € Hy, of
smallest norm given by the projection theorem is nonzero.

(2) Orthogonality. Denote by ¢, C Hy, the line corresponding to half-plane Hy. Let w € R™ be a unit vector
in the direction of ¢;. Then, v — aw € ¢} for all @ € R, and by minimality of v,
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Choosing o = (v, w), we find that ||v||§ < ||v||§ - <v,w>§, hence (v,w) =0 and v L (.
(3) Separation. From the proof of the hyperplane separation theorem, it suffices to show H'U||§ < |lv+t(z—v) ||§

for all z € K and 0 <t < 1. Recall K C Hy, so by convexity, v + t(z — v) € Hi. By minimality of v,
the desired inequality holds and we are done! O

Corollary 1. Suppose A, B C R? are disjoint, convex, compact polygons. Then there exists a separating
line with normal vector orthogonal to one of the edges of A or B.

Theorem 3, (Separating Axis Theorem, General Case). Suppose A, B C R" are disjoint, convex, compact

polytopes. Then there exists a separating hyperplane with normal vector orthogonal to one of the facets of
the Minkowski sum A + (—B).
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