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Carathéodory’s Theorem
Theorem 1 (Carathéodory). Let X ⊂ Rd. Then each point of conv(X) is
a convex combination of at most d+ 1 points of X.

Proof. Suppose there exists y ∈ conv(X) that cannot be expressed as a
convex combination of fewer than m ≥ d+ 2 points in X. Then

y =
m∑
k=1

λkxk with
m∑
k=1

λk = 1 and λk > 0 ∀ k

The m ≥ d+ 2 points x1, . . . , xm ∈ X must be affinely dependent, so

m∑
k=1

µkxk = 0 with
m∑
k=1

µk = 0

Then, for any α ∈ R,

y = y + 0 =
m∑
k=1

λkxk + α

m∑
j=1

µkxk =
m∑
k=1

(λk + αµk)xk

The new coefficients Λk ≡ λk + αµk satisfy
∑m
k=1 Λk = 1. Choosing

j = arg min
k:µk>0

λk
µk

we further have Λk ≥ 0 for all k = 1, . . . ,m and Λj = 0. Hence y is a convex
combination of fewer than m points of X, a contradiction!

From the proof it is clear that each point of conv(X) for X ⊂ Rd can
be written as a convex combination of affinely independent points from X,
of which there can be at most d+ 1. It follows immediately that the convex
hull of a set X ⊂ Rd is the union of all simplexes with vertices in X.

Corollary 1. Let X ⊂ Rd. Each boundary point of conv(X) is a convex
combination of d points from X.

Proof (from math.stackexchange.com/q/1786544). LetC = conv(X). For
any x ∈ ∂C, there is a supporting hyperplane H to C at x; that is, C is
disjoint from an open half-space of H. Observe that any representation of x
as a convex combination of points from P cannot involve elements of P that
are not in H; otherwise, the combination would lie outside the hyperplane.
Therefore x ∈ conv(P ∩ H). Applying Carathéodory’s theorem to P ∩ H,
considered as a subset of the (d− 1)-dimensional space H, we are done.

Corollary 2. The convex hull of a compact set K ⊂ Rd is compact.

Proof (Danzer et al. 1963). Note that the unit simplex ∆d ⊂ Rd+1 is com-
pact. Consider the function f : (Rd+1 ×Kd+1)→ K given by

f(α1, . . . , αd+1, x1, . . . , xd+1) =
d+1∑
k=1

αkxk ∈ K

Since f is continuous and ∆d ×Kd+1 is compact, the set f(∆d ×Kd+1) is
compact. By Carathéodory’s theorem, f(∆d ×Kd+1) = conv(K).
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Radon’s Lemma
Theorem 2 (Radon’s Lemma). Let A = {a1, . . . , ad+2} ⊂ Rd. Then there
exist two disjoint subsets A1, A2 ⊂ A whose convex hulls have nonempty
intersection.

Figure 1: Two radon partitions.
Proof (Matoušek 2002). The d + 2 points in A ⊂ Rd must be affinely de-
pendent, that is, there exist λ1, . . . , λd+2 ∈ R not all zero such that

d+2∑
k=1

λk = 0 and
d+2∑
k=1

λkak = 0

The sets P = {k | λk > 0} and N = {k | λk < 0} determine the desired
subsets. Both are nonempty, so put A1 = {λk | k ∈ P} and A2 = {λk | k ∈
N}. Let S ≡

∑
k∈P λk; we also have S = −

∑
k∈N λk. Define

x ≡
∑
k∈P

λk
S
ak =

∑
k∈N

−λk
S

ak

where equality holds because
∑d+2
k=1 λkak =

∑
k∈P λkak +

∑
k∈N λkak = 0.

Both representations cast x as a convex combination, first of points from
A1 then from A2. Hence x ∈ conv(A1) ∩ conv(A2).

Helly’s Theorem
Theorem 3 (Helly). Let C1, C2, . . . , Cn ⊂ Rd be convex, with n ≥ d + 1.
If every d+ 1 of these sets intersect, then ∩ni=1Ci 6= ∅.

Proof (Matoušek 2002). For fixed d, we proceed by induction on n. The
base case n = d+ 1 is clear, so assume n ≥ d+ 2 and that Helly’s theorem
holds for smaller n.

Consider convex C1, . . . , Cn ⊂ Rd such that any d+ 1 sets intersect. If
we leave out any one of these sets Ci, the remaining sets have nonempty
intersection ai ∈ ∩j 6=iCj by the inductive assumption. Consider the n ≥
d+2 points A = {a1, . . . , an} ⊂ Rd. By Radon’s lemma, there exist disjoint
sets A1, A2 ⊂ A such that conv(A1)∩conv(A2) 6= ∅.

Figure 2: Illustration of Radon’s
proof of Helly’s theorem for d = 2
and n = 4.

Choose a point x in the
intersection. For any i ∈ [n], either ai /∈ A1 or ai /∈ A2. In the former case,
each aj ∈ A1 lies in Ci, so x ∈ conv(A1) ⊂ Ci by convexity. In the latter
case we similarly have x ∈ conv(A2) ⊂ Ci. Therefore, x ∈

⋂n
i=1 Ci.

Further Reading
Compare proofs to (Matoušek 2002). For a comprehensive survey of appli-
cations see (Danzer et al. 1963). An elegant proof of Haar’s theorem from
approximation theory is given by (Pták 1958) via Carathéodory’s theorem.
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