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Carathéodory’s Theorem

Theorem 1 (Carathéodory). Let X C RY. Then each point of conv(X) is
a convex combination of at most d + 1 points of X.

Proof. Suppose there exists y € conv(X) that cannot be expressed as a
convex combination of fewer than m > d + 2 points in X. Then
m m
y=Y Mpzp with Y Ay =1land Ay >0Vk
k=1 k=1

The m > d + 2 points x1, ..., %, € X must be affinely dependent, so

ipkxk = 0 with iuk =0
k=1 k=1

Then, for any a € R,

m m m
y=y+0= ZAkIEk JFOZZMkiEk = Z(/\k + aug)zy
=1 i=1 =1

The new coeflicients Ay = A\, + oy satisfy Z;anl A = 1. Choosing

. . k
j =arg min —

kipr>0 W
we further have Ay, > 0 forallk =1,...,m and A; = 0. Hence y is a convex
combination of fewer than m points of X, a contradiction! O

From the proof it is clear that each point of conv(X) for X C R¢ can
be written as a convex combination of affinely independent points from X,
of which there can be at most d+ 1. It follows immediately that the convex
hull of a set X C R? is the union of all simplexes with vertices in X.

Corollary 1. Let X C R?. Each boundary point of conv(X) is a convex
combination of d points from X.

Proof (from math.stackexchange.com/q/1786544). Let C' = conv(X). For
any x € 0C, there is a supporting hyperplane H to C at x; that is, C is
disjoint from an open half-space of H. Observe that any representation of x
as a convex combination of points from P cannot involve elements of P that
are not in H; otherwise, the combination would lie outside the hyperplane.
Therefore x € conv(P NH). Applying Carathéodory’s theorem to P N H,
considered as a subset of the (d — 1)-dimensional space H, we are done. [

Corollary 2. The convez hull of a compact set K C R? is compact.

Proof (Danzer et al. 1963). Note that the unit simplex A% ¢ R+ is com-
pact. Consider the function f : (R! x K4+1) - K given by

d+1
flan, o a1, 21,0, a41) = E agTy € K
k=1

Since f is continuous and A? x K9+ is compact, the set f(A? x K9t1) is
compact. By Carathéodory’s theorem, f(A? x K1) = conv(K). O


math.stackexchange.com/q/1786544

Benjamin R. Bray CONVEX ANALYSIS: Dimensionality Results for Convex Sets June 21, 2017

Figure 1: Two radon partitions.

Figure 2: Illustration of Radon’s
proof of Helly’s theorem for d = 2
and n = 4.

Radon’s Lemma

Theorem 2 (Radon’s Lemma). Let A = {aj,...,aq42} C R Then there
exist two disjoint subsets Ay, As C A whose convexr hulls have nonempty
intersection.

Proof (Matousek 2002). The d + 2 points in A C R? must be affinely de-
pendent, that is, there exist A1,..., Agy2 € R not all zero such that

d+2 d+2

Z)\k =0 and Z)\kak =0
k=1 k=1

The sets P = {k | Ay > 0} and N = {k | A < 0} determine the desired
subsets. Both are nonempty, so put Ay = {\; | k € P} and Ay = {\z | k €
N}. Let S =) ,cpAk; we also have S = — 3", -\ Ap. Define

where equality holds because ZZ;? AkQk = Y pep M@k + D pen Akar = 0.
Both representations cast = as a convex combination, first of points from
Aj; then from As. Hence z € conv(A;) Nconv(As). O

Helly’s Theorem

Theorem 3 (Helly). Let Cy,Cy,...,C, C RY be convex, with n > d + 1.
If every d + 1 of these sets intersect, then NI, C; # 0.

Proof (Matousek 2002). For fixed d, we proceed by induction on n. The
base case n = d + 1 is clear, so assume n > d + 2 and that Helly’s theorem
holds for smaller n.

Consider convex C1,...,C, C R? such that any d + 1 sets intersect. If
we leave out any one of these sets C;, the remaining sets have nonempty
intersection a; € Njx;C; by the inductive assumption. Consider the n >
d+2 points A = {ay,...,a,} C R?. By Radon’s lemma, there exist disjoint
sets A1, A2 C A such that conv(A4;)Nconv(Az) # (). Choose a point z in the
intersection. For any ¢ € [n], either a; ¢ A; or a; ¢ As. In the former case,
each a; € A; lies in C, so « € conv(A;) C C; by convexity. In the latter
case we similarly have z € conv(A4,) C C;. Therefore, z € N1, C;. O

Further Reading

Compare proofs to (Matousek 2002). For a comprehensive survey of appli-
cations see (Danzer et al. 1963). An elegant proof of Haar’s theorem from
approximation theory is given by (Ptak 1958) via Carathéodory’s theorem.
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